Secrets
A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key. Such information might otherwise be put in a Pod specification or in a container image. Using a Secret means that you don't need to include confidential data in your application code.
Because Secrets can be created independently of the Pods that use them, there is less risk of the Secret (and its data) being exposed during the workflow of creating, viewing, and editing Pods. Kubernetes, and applications that run in your cluster, can also take additional precautions with Secrets, such as avoiding writing sensitive data to nonvolatile storage.
Secrets are similar to ConfigMaps but are specifically intended to hold confidential data.
Kubernetes Secrets are, by default, stored unencrypted in the API server's underlying data store (etcd). Anyone with API access can retrieve or modify a Secret, and so can anyone with access to etcd. Additionally, anyone who is authorized to create a Pod in a namespace can use that access to read any Secret in that namespace; this includes indirect access such as the ability to create a Deployment.
In order to safely use Secrets, take at least the following steps:
- Enable Encryption at Rest for Secrets.
- Enable or configure RBAC rules with least-privilege access to Secrets.
- Restrict Secret access to specific containers.
- Consider using external Secret store providers.
For more guidelines to manage and improve the security of your Secrets, refer to Good practices for Kubernetes Secrets.
See Information security for Secrets for more details.
Uses for Secrets
You can use Secrets for purposes such as the following:
- Set environment variables for a container.
- Provide credentials such as SSH keys or passwords to Pods.
- Allow the kubelet to pull container images from private registries.
The Kubernetes control plane also uses Secrets; for example, bootstrap token Secrets are a mechanism to help automate node registration.
Use case: dotfiles in a secret volume
You can make your data "hidden" by defining a key that begins with a dot.
This key represents a dotfile or "hidden" file. For example, when the following Secret
is mounted into a volume, secret-volume
, the volume will contain a single file,
called .secret-file
, and the dotfile-test-container
will have this file
present at the path /etc/secret-volume/.secret-file
.
ls -l
;
you must use ls -la
to see them when listing directory contents.
apiVersion: v1
kind: Secret
metadata:
name: dotfile-secret
data:
.secret-file: dmFsdWUtMg0KDQo=
---
apiVersion: v1
kind: Pod
metadata:
name: secret-dotfiles-pod
spec:
volumes:
- name: secret-volume
secret:
secretName: dotfile-secret
containers:
- name: dotfile-test-container
image: registry.k8s.io/busybox
command:
- ls
- "-l"
- "/etc/secret-volume"
volumeMounts:
- name: secret-volume
readOnly: true
mountPath: "/etc/secret-volume"
Use case: Secret visible to one container in a Pod
Consider a program that needs to handle HTTP requests, do some complex business logic, and then sign some messages with an HMAC. Because it has complex application logic, there might be an unnoticed remote file reading exploit in the server, which could expose the private key to an attacker.
This could be divided into two processes in two containers: a frontend container which handles user interaction and business logic, but which cannot see the private key; and a signer container that can see the private key, and responds to simple signing requests from the frontend (for example, over localhost networking).
With this partitioned approach, an attacker now has to trick the application server into doing something rather arbitrary, which may be harder than getting it to read a file.
Alternatives to Secrets
Rather than using a Secret to protect confidential data, you can pick from alternatives.
Here are some of your options:
- If your cloud-native component needs to authenticate to another application that you know is running within the same Kubernetes cluster, you can use a ServiceAccount and its tokens to identify your client.
- There are third-party tools that you can run, either within or outside your cluster, that manage sensitive data. For example, a service that Pods access over HTTPS, that reveals a Secret if the client correctly authenticates (for example, with a ServiceAccount token).
- For authentication, you can implement a custom signer for X.509 certificates, and use CertificateSigningRequests to let that custom signer issue certificates to Pods that need them.
- You can use a device plugin to expose node-local encryption hardware to a specific Pod. For example, you can schedule trusted Pods onto nodes that provide a Trusted Platform Module, configured out-of-band.
You can also combine two or more of those options, including the option to use Secret objects themselves.
For example: implement (or deploy) an operator that fetches short-lived session tokens from an external service, and then creates Secrets based on those short-lived session tokens. Pods running in your cluster can make use of the session tokens, and operator ensures they are valid. This separation means that you can run Pods that are unaware of the exact mechanisms for issuing and refreshing those session tokens.
Types of Secret
When creating a Secret, you can specify its type using the type
field of
the Secret
resource, or certain equivalent kubectl
command line flags (if available).
The Secret type is used to facilitate programmatic handling of the Secret data.
Kubernetes provides several built-in types for some common usage scenarios. These types vary in terms of the validations performed and the constraints Kubernetes imposes on them.
Built-in Type | Usage |
---|---|
Opaque |
arbitrary user-defined data |
kubernetes.io/service-account-token |
ServiceAccount token |
kubernetes.io/dockercfg |
serialized ~/.dockercfg file |
kubernetes.io/dockerconfigjson |
serialized ~/.docker/config.json file |
kubernetes.io/basic-auth |
credentials for basic authentication |
kubernetes.io/ssh-auth |
credentials for SSH authentication |
kubernetes.io/tls |
data for a TLS client or server |
bootstrap.kubernetes.io/token |
bootstrap token data |
You can define and use your own Secret type by assigning a non-empty string as the
type
value for a Secret object (an empty string is treated as an Opaque
type).
Kubernetes doesn't impose any constraints on the type name. However, if you are using one of the built-in types, you must meet all the requirements defined for that type.
If you are defining a type of Secret that's for public use, follow the convention
and structure the Secret type to have your domain name before the name, separated
by a /
. For example: cloud-hosting.example.net/cloud-api-credentials
.
Opaque Secrets
Opaque
is the default Secret type if you don't explicitly specify a type in
a Secret manifest. When you create a Secret using kubectl
, you must use the
generic
subcommand to indicate an Opaque
Secret type. For example, the
following command creates an empty Secret of type Opaque
:
kubectl create secret generic empty-secret
kubectl get secret empty-secret
The output looks like:
NAME TYPE DATA AGE
empty-secret Opaque 0 2m6s
The DATA
column shows the number of data items stored in the Secret.
In this case, 0
means you have created an empty Secret.
ServiceAccount token Secrets
A kubernetes.io/service-account-token
type of Secret is used to store a
token credential that identifies a
ServiceAccount. This
is a legacy mechanism that provides long-lived ServiceAccount credentials to
Pods.
In Kubernetes v1.22 and later, the recommended approach is to obtain a
short-lived, automatically rotating ServiceAccount token by using the
TokenRequest
API instead. You can get these short-lived tokens using the following methods:
- Call the
TokenRequest
API either directly or by using an API client likekubectl
. For example, you can use thekubectl create token
command. - Request a mounted token in a projected volume in your Pod manifest. Kubernetes creates the token and mounts it in the Pod. The token is automatically invalidated when the Pod that it's mounted in is deleted. For details, see Launch a Pod using service account token projection.
TokenRequest
API to obtain a token,
and the security exposure of persisting a non-expiring token credential
in a readable API object is acceptable to you. For instructions, see
Manually create a long-lived API token for a ServiceAccount.
When using this Secret type, you need to ensure that the
kubernetes.io/service-account.name
annotation is set to an existing
ServiceAccount name. If you are creating both the ServiceAccount and
the Secret objects, you should create the ServiceAccount object first.
After the Secret is created, a Kubernetes controller
fills in some other fields such as the kubernetes.io/service-account.uid
annotation, and the
token
key in the data
field, which is populated with an authentication token.
The following example configuration declares a ServiceAccount token Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-sa-sample
annotations:
kubernetes.io/service-account.name: "sa-name"
type: kubernetes.io/service-account-token
data:
extra: YmFyCg==
After creating the Secret, wait for Kubernetes to populate the token
key in the data
field.
See the ServiceAccount
documentation for more information on how ServiceAccounts work.
You can also check the automountServiceAccountToken
field and the
serviceAccountName
field of the
Pod
for information on referencing ServiceAccount credentials from within Pods.
Docker config Secrets
If you are creating a Secret to store credentials for accessing a container image registry,
you must use one of the following type
values for that Secret:
kubernetes.io/dockercfg
: store a serialized~/.dockercfg
which is the legacy format for configuring Docker command line. The Secretdata
field contains a.dockercfg
key whose value is the content of a base64 encoded~/.dockercfg
file.kubernetes.io/dockerconfigjson
: store a serialized JSON that follows the same format rules as the~/.docker/config.json
file, which is a new format for~/.dockercfg
. The Secretdata
field must contain a.dockerconfigjson
key for which the value is the content of a base64 encoded~/.docker/config.json
file.
Below is an example for a kubernetes.io/dockercfg
type of Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-dockercfg
type: kubernetes.io/dockercfg
data:
.dockercfg: |
eyJhdXRocyI6eyJodHRwczovL2V4YW1wbGUvdjEvIjp7ImF1dGgiOiJvcGVuc2VzYW1lIn19fQo=
stringData
field instead.
When you create Docker config Secrets using a manifest, the API
server checks whether the expected key exists in the data
field, and
it verifies if the value provided can be parsed as a valid JSON. The API
server doesn't validate if the JSON actually is a Docker config file.
You can also use kubectl
to create a Secret for accessing a container
registry, such as when you don't have a Docker configuration file:
kubectl create secret docker-registry secret-tiger-docker \
--docker-email=tiger@acme.example \
--docker-username=tiger \
--docker-password=pass1234 \
--docker-server=my-registry.example:5000
This command creates a Secret of type kubernetes.io/dockerconfigjson
.
Retrieve the .data.dockerconfigjson
field from that new Secret and decode the
data:
kubectl get secret secret-tiger-docker -o jsonpath='{.data.*}' | base64 -d
The output is equivalent to the following JSON document (which is also a valid Docker configuration file):
{
"auths": {
"my-registry.example:5000": {
"username": "tiger",
"password": "pass1234",
"email": "tiger@acme.example",
"auth": "dGlnZXI6cGFzczEyMzQ="
}
}
}
The auth
value there is base64 encoded; it is obscured but not secret.
Anyone who can read that Secret can learn the registry access bearer token.
It is suggested to use credential providers to dynamically and securely provide pull secrets on-demand.
Basic authentication Secret
The kubernetes.io/basic-auth
type is provided for storing credentials needed
for basic authentication. When using this Secret type, the data
field of the
Secret must contain one of the following two keys:
username
: the user name for authenticationpassword
: the password or token for authentication
Both values for the above two keys are base64 encoded strings. You can
alternatively provide the clear text content using the stringData
field in the
Secret manifest.
The following manifest is an example of a basic authentication Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-basic-auth
type: kubernetes.io/basic-auth
stringData:
username: admin # required field for kubernetes.io/basic-auth
password: t0p-Secret # required field for kubernetes.io/basic-auth
stringData
field for a Secret does not work well with server-side apply.
The basic authentication Secret type is provided only for convenience.
You can create an Opaque
type for credentials used for basic authentication.
However, using the defined and public Secret type (kubernetes.io/basic-auth
) helps other
people to understand the purpose of your Secret, and sets a convention for what key names
to expect.
The Kubernetes API verifies that the required keys are set for a Secret of this type.
SSH authentication Secrets
The builtin type kubernetes.io/ssh-auth
is provided for storing data used in
SSH authentication. When using this Secret type, you will have to specify a
ssh-privatekey
key-value pair in the data
(or stringData
) field
as the SSH credential to use.
The following manifest is an example of a Secret used for SSH public/private key authentication:
apiVersion: v1
kind: Secret
metadata:
name: secret-ssh-auth
type: kubernetes.io/ssh-auth
data:
# the data is abbreviated in this example
ssh-privatekey: |
UG91cmluZzYlRW1vdGljb24lU2N1YmE=
The SSH authentication Secret type is provided only for convenience.
You can create an Opaque
type for credentials used for SSH authentication.
However, using the defined and public Secret type (kubernetes.io/ssh-auth
) helps other
people to understand the purpose of your Secret, and sets a convention for what key names
to expect.
The Kubernetes API verifies that the required keys are set for a Secret of this type.
known_hosts
file added to a ConfigMap.
TLS Secrets
The kubernetes.io/tls
Secret type is for storing
a certificate and its associated key that are typically used for TLS.
One common use for TLS Secrets is to configure encryption in transit for
an Ingress, but you can also use it
with other resources or directly in your workload.
When using this type of Secret, the tls.key
and the tls.crt
key must be provided
in the data
(or stringData
) field of the Secret configuration, although the API
server doesn't actually validate the values for each key.
As an alternative to using stringData
, you can use the data
field to provide
the base64 encoded certificate and private key. For details, see
Constraints on Secret names and data.
The following YAML contains an example config for a TLS Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-tls
type: kubernetes.io/tls
data:
# values are base64 encoded, which obscures them but does NOT provide
# any useful level of confidentiality
tls.crt: |
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNVakNDQWJzQ0FnMytNQTBHQ1NxR1NJYjNE
UUVCQlFVQU1JR2JNUXN3Q1FZRFZRUUdFd0pLVURFT01Bd0cKQTFVRUNCTUZWRzlyZVc4eEVEQU9C
Z05WQkFjVEIwTm9kVzh0YTNVeEVUQVBCZ05WQkFvVENFWnlZVzVyTkVSRQpNUmd3RmdZRFZRUUxF
dzlYWldKRFpYSjBJRk4xY0hCdmNuUXhHREFXQmdOVkJBTVREMFp5WVc1ck5FUkVJRmRsCllpQkRR
VEVqTUNFR0NTcUdTSWIzRFFFSkFSWVVjM1Z3Y0c5eWRFQm1jbUZ1YXpSa1pDNWpiMjB3SGhjTk1U
TXcKTVRFeE1EUTFNVE01V2hjTk1UZ3dNVEV3TURRMU1UTTVXakJMTVFzd0NRWURWUVFHREFKS1VE
RVBNQTBHQTFVRQpDQXdHWEZSdmEzbHZNUkV3RHdZRFZRUUtEQWhHY21GdWF6UkVSREVZTUJZR0Ex
VUVBd3dQZDNkM0xtVjRZVzF3CmJHVXVZMjl0TUlHYU1BMEdDU3FHU0liM0RRRUJBUVVBQTRHSUFE
Q0JoQUo5WThFaUhmeHhNL25PbjJTbkkxWHgKRHdPdEJEVDFKRjBReTliMVlKanV2YjdjaTEwZjVN
Vm1UQllqMUZTVWZNOU1vejJDVVFZdW4yRFljV29IcFA4ZQpqSG1BUFVrNVd5cDJRN1ArMjh1bklI
QkphVGZlQ09PekZSUFY2MEdTWWUzNmFScG04L3dVVm16eGFLOGtCOWVaCmhPN3F1TjdtSWQxL2pW
cTNKODhDQXdFQUFUQU5CZ2txaGtpRzl3MEJBUVVGQUFPQmdRQU1meTQzeE15OHh3QTUKVjF2T2NS
OEtyNWNaSXdtbFhCUU8xeFEzazlxSGtyNFlUY1JxTVQ5WjVKTm1rWHYxK2VSaGcwTi9WMW5NUTRZ
RgpnWXcxbnlESnBnOTduZUV4VzQyeXVlMFlHSDYyV1hYUUhyOVNVREgrRlowVnQvRGZsdklVTWRj
UUFEZjM4aU9zCjlQbG1kb3YrcE0vNCs5a1h5aDhSUEkzZXZ6OS9NQT09Ci0tLS0tRU5EIENFUlRJ
RklDQVRFLS0tLS0K
# In this example, the key data is not a real PEM-encoded private key
tls.key: |
RXhhbXBsZSBkYXRhIGZvciB0aGUgVExTIGNydCBmaWVsZA==
The TLS Secret type is provided only for convenience.
You can create an Opaque
type for credentials used for TLS authentication.
However, using the defined and public Secret type (kubernetes.io/tls
)
helps ensure the consistency of Secret format in your project. The API server
verifies if the required keys are set for a Secret of this type.
To create a TLS Secret using kubectl
, use the tls
subcommand:
kubectl create secret tls my-tls-secret \
--cert=path/to/cert/file \
--key=path/to/key/file
The public/private key pair must exist before hand. The public key certificate for --cert
must be .PEM encoded
and must match the given private key for --key
.
Bootstrap token Secrets
The bootstrap.kubernetes.io/token
Secret type is for
tokens used during the node bootstrap process. It stores tokens used to sign
well-known ConfigMaps.
A bootstrap token Secret is usually created in the kube-system
namespace and
named in the form bootstrap-token-<token-id>
where <token-id>
is a 6 character
string of the token ID.
As a Kubernetes manifest, a bootstrap token Secret might look like the following:
apiVersion: v1
kind: Secret
metadata:
name: bootstrap-token-5emitj
namespace: kube-system
type: bootstrap.kubernetes.io/token
data:
auth-extra-groups: c3lzdGVtOmJvb3RzdHJhcHBlcnM6a3ViZWFkbTpkZWZhdWx0LW5vZGUtdG9rZW4=
expiration: MjAyMC0wOS0xM1QwNDozOToxMFo=
token-id: NWVtaXRq
token-secret: a3E0Z2lodnN6emduMXAwcg==
usage-bootstrap-authentication: dHJ1ZQ==
usage-bootstrap-signing: dHJ1ZQ==
A bootstrap token Secret has the following keys specified under data
:
token-id
: A random 6 character string as the token identifier. Required.token-secret
: A random 16 character string as the actual token Secret. Required.description
: A human-readable string that describes what the token is used for. Optional.expiration
: An absolute UTC time using RFC3339 specifying when the token should be expired. Optional.usage-bootstrap-<usage>
: A boolean flag indicating additional usage for the bootstrap token.auth-extra-groups
: A comma-separated list of group names that will be authenticated as in addition to thesystem:bootstrappers
group.
You can alternatively provide the values in the stringData
field of the Secret
without base64 encoding them:
apiVersion: v1
kind: Secret
metadata:
# Note how the Secret is named
name: bootstrap-token-5emitj
# A bootstrap token Secret usually resides in the kube-system namespace
namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
auth-extra-groups: "system:bootstrappers:kubeadm:default-node-token"
expiration: "2020-09-13T04:39:10Z"
# This token ID is used in the name
token-id: "5emitj"
token-secret: "kq4gihvszzgn1p0r"
# This token can be used for authentication
usage-bootstrap-authentication: "true"
# and it can be used for signing
usage-bootstrap-signing: "true"
stringData
field for a Secret does not work well with server-side apply.
Working with Secrets
Creating a Secret
There are several options to create a Secret:
Constraints on Secret names and data
The name of a Secret object must be a valid DNS subdomain name.
You can specify the data
and/or the stringData
field when creating a
configuration file for a Secret. The data
and the stringData
fields are optional.
The values for all keys in the data
field have to be base64-encoded strings.
If the conversion to base64 string is not desirable, you can choose to specify
the stringData
field instead, which accepts arbitrary strings as values.
The keys of data
and stringData
must consist of alphanumeric characters,
-
, _
or .
. All key-value pairs in the stringData
field are internally
merged into the data
field. If a key appears in both the data
and the
stringData
field, the value specified in the stringData
field takes
precedence.
Size limit
Individual Secrets are limited to 1MiB in size. This is to discourage creation of very large Secrets that could exhaust the API server and kubelet memory. However, creation of many smaller Secrets could also exhaust memory. You can use a resource quota to limit the number of Secrets (or other resources) in a namespace.
Editing a Secret
You can edit an existing Secret unless it is immutable. To edit a Secret, use one of the following methods:
You can also edit the data in a Secret using the Kustomize tool. However, this
method creates a new Secret
object with the edited data.
Depending on how you created the Secret, as well as how the Secret is used in
your Pods, updates to existing Secret
objects are propagated automatically to
Pods that use the data. For more information, refer to Using Secrets as files from a Pod section.
Using a Secret
Secrets can be mounted as data volumes or exposed as environment variables to be used by a container in a Pod. Secrets can also be used by other parts of the system, without being directly exposed to the Pod. For example, Secrets can hold credentials that other parts of the system should use to interact with external systems on your behalf.
Secret volume sources are validated to ensure that the specified object reference actually points to an object of type Secret. Therefore, a Secret needs to be created before any Pods that depend on it.
If the Secret cannot be fetched (perhaps because it does not exist, or due to a temporary lack of connection to the API server) the kubelet periodically retries running that Pod. The kubelet also reports an Event for that Pod, including details of the problem fetching the Secret.
Optional Secrets
When you reference a Secret in a Pod, you can mark the Secret as optional, such as in the following example. If an optional Secret doesn't exist, Kubernetes ignores it.
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: redis
volumeMounts:
- name: foo
mountPath: "/etc/foo"
readOnly: true
volumes:
- name: foo
secret:
secretName: mysecret
optional: true
By default, Secrets are required. None of a Pod's containers will start until all non-optional Secrets are available.
If a Pod references a specific key in a non-optional Secret and that Secret does exist, but is missing the named key, the Pod fails during startup.
Using Secrets as files from a Pod
If you want to access data from a Secret in a Pod, one way to do that is to have Kubernetes make the value of that Secret be available as a file inside the filesystem of one or more of the Pod's containers.
For instructions, refer to Distribute credentials securely using Secrets.
When a volume contains data from a Secret, and that Secret is updated, Kubernetes tracks this and updates the data in the volume, using an eventually-consistent approach.
The kubelet keeps a cache of the current keys and values for the Secrets that are used in
volumes for pods on that node.
You can configure the way that the kubelet detects changes from the cached values. The
configMapAndSecretChangeDetectionStrategy
field in the
kubelet configuration controls
which strategy the kubelet uses. The default strategy is Watch
.
Updates to Secrets can be either propagated by an API watch mechanism (the default), based on a cache with a defined time-to-live, or polled from the cluster API server on each kubelet synchronisation loop.
As a result, the total delay from the moment when the Secret is updated to the moment when new keys are projected to the Pod can be as long as the kubelet sync period + cache propagation delay, where the cache propagation delay depends on the chosen cache type (following the same order listed in the previous paragraph, these are: watch propagation delay, the configured cache TTL, or zero for direct polling).
Using Secrets as environment variables
To use a Secret in an environment variable in a Pod:
- For each container in your Pod specification, add an environment variable
for each Secret key that you want to use to the
env[].valueFrom.secretKeyRef
field. - Modify your image and/or command line so that the program looks for values in the specified environment variables.
For instructions, refer to Define container environment variables using Secret data.
It's important to note that the range of characters allowed for environment variable names in pods is restricted. If any keys do not meet the rules, those keys are not made available to your container, though the Pod is allowed to start.
Container image pull Secrets
If you want to fetch container images from a private repository, you need a way for the kubelet on each node to authenticate to that repository. You can configure image pull Secrets to make this possible. These Secrets are configured at the Pod level.
Using imagePullSecrets
The imagePullSecrets
field is a list of references to Secrets in the same namespace.
You can use an imagePullSecrets
to pass a Secret that contains a Docker (or other) image registry
password to the kubelet. The kubelet uses this information to pull a private image on behalf of your Pod.
See the PodSpec API
for more information about the imagePullSecrets
field.
Manually specifying an imagePullSecret
You can learn how to specify imagePullSecrets
from the
container images
documentation.
Arranging for imagePullSecrets to be automatically attached
You can manually create imagePullSecrets
, and reference these from a ServiceAccount. Any Pods
created with that ServiceAccount or created with that ServiceAccount by default, will get their
imagePullSecrets
field set to that of the service account.
See Add ImagePullSecrets to a service account
for a detailed explanation of that process.
Using Secrets with static Pods
You cannot use ConfigMaps or Secrets with static Pods.
Immutable Secrets
Kubernetes v1.21 [stable]
Kubernetes lets you mark specific Secrets (and ConfigMaps) as immutable. Preventing changes to the data of an existing Secret has the following benefits:
- protects you from accidental (or unwanted) updates that could cause applications outages
- (for clusters that extensively use Secrets - at least tens of thousands of unique Secret to Pod mounts), switching to immutable Secrets improves the performance of your cluster by significantly reducing load on kube-apiserver. The kubelet does not need to maintain a [watch] on any Secrets that are marked as immutable.
Marking a Secret as immutable
You can create an immutable Secret by setting the immutable
field to true
. For example,
apiVersion: v1
kind: Secret
metadata: ...
data: ...
immutable: true
You can also update any existing mutable Secret to make it immutable.
data
field. You can only delete and recreate the Secret.
Existing Pods maintain a mount point to the deleted Secret - it is recommended to recreate
these pods.
Information security for Secrets
Although ConfigMap and Secret work similarly, Kubernetes applies some additional protection for Secret objects.
Secrets often hold values that span a spectrum of importance, many of which can cause escalations within Kubernetes (e.g. service account tokens) and to external systems. Even if an individual app can reason about the power of the Secrets it expects to interact with, other apps within the same namespace can render those assumptions invalid.
A Secret is only sent to a node if a Pod on that node requires it.
For mounting Secrets into Pods, the kubelet stores a copy of the data into a tmpfs
so that the confidential data is not written to durable storage.
Once the Pod that depends on the Secret is deleted, the kubelet deletes its local copy
of the confidential data from the Secret.
There may be several containers in a Pod. By default, containers you define only have access to the default ServiceAccount and its related Secret. You must explicitly define environment variables or map a volume into a container in order to provide access to any other Secret.
There may be Secrets for several Pods on the same node. However, only the Secrets that a Pod requests are potentially visible within its containers. Therefore, one Pod does not have access to the Secrets of another Pod.
Configure least-privilege access to Secrets
To enhance the security measures around Secrets, Kubernetes provides a mechanism: you can
annotate a ServiceAccount as kubernetes.io/enforce-mountable-secrets: "true"
.
For more information, you can refer to the documentation about this annotation.
privileged: true
on a node can access all
Secrets used on that node.
What's next
- For guidelines to manage and improve the security of your Secrets, refer to Good practices for Kubernetes Secrets.
- Learn how to manage Secrets using
kubectl
- Learn how to manage Secrets using config file
- Learn how to manage Secrets using kustomize
- Read the API reference for
Secret